Abstract

We report on the linear polarization of polariton condensates in a codirectional coupler that allows evanescent coupling between adjacent waveguides. During the condensate’s formation, polaritons usually acquire a randomly oriented polarization, however, our results reveal a preferential orientation of the linear polarization along the waveguide propagation path. Furthermore, we observe polarization-dependent intensity oscillations in the output terminal of the coupler, and we identify the mode beating between the linear-polarized eigenmodes as the origin of these oscillations. Our findings provide an insight into the control of the polarization of polariton condensates, paving the way for the development of spin-based polaritonic architectures where condensates propagate over macroscopic distances.

Description

Effects of the Linear Polarization of Polariton Condensates in Their Propagation in Codirectional Couplers | ACS Photonics

Links and resources

Tags