There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairsmdashwhether they will dissociate to free charges or geminately recombinemdashis determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.
Description
The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics : Nature Communications : Nature Research
%0 Journal Article
%1 causa2016electronhole
%A Causa', Martina
%A De Jonghe-Risse, Jelissa
%A Scarongella, Mariateresa
%A Brauer, Jan C.
%A Buchaca-Domingo, Ester
%A Moser, Jacques-E
%A Stingelin, Natalie
%A Banerji, Natalie
%D 2016
%I The Author(s)
%J Nat Commun
%K charge_separation organic
%T The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics
%U http://dx.doi.org/10.1038/ncomms12556
%V 7
%X There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairsmdashwhether they will dissociate to free charges or geminately recombinemdashis determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.
@article{causa2016electronhole,
abstract = {There has been long-standing debate on how free charges are generated in donor:acceptor blends that are used in organic solar cells, and which are generally comprised of a complex phase morphology, where intermixed and neat phases of the donor and acceptor material co-exist. Here we resolve this question, basing our conclusions on Stark effect spectroscopy data obtained in the absence and presence of externally applied electric fields. Reconciling opposing views found in literature, we unambiguously demonstrate that the fate of photogenerated electron-hole pairs[mdash]whether they will dissociate to free charges or geminately recombine[mdash]is determined at ultrafast times, despite the fact that their actual spatial separation can be much slower. Our insights are important to further develop rational approaches towards material design and processing of organic solar cells, assisting to realize their purported promise as lead-free, third-generation energy technology that can reach efficiencies over 10%.},
added-at = {2016-09-09T14:04:45.000+0200},
author = {Causa', Martina and De Jonghe-Risse, Jelissa and Scarongella, Mariateresa and Brauer, Jan C. and Buchaca-Domingo, Ester and Moser, Jacques-E and Stingelin, Natalie and Banerji, Natalie},
biburl = {https://www.bibsonomy.org/bibtex/2897f61a3fa917e7cbcb9a32ed59ded1e/bretschneider_m},
comment = {Supplementary information available for this article at http://www.nature.com/ncomms/2016/160902/ncomms12556/suppinfo/ncomms12556_S1.html},
description = {The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics : Nature Communications : Nature Research},
interhash = {560b1d0a07de8cef23a3a853d62b3af3},
intrahash = {897f61a3fa917e7cbcb9a32ed59ded1e},
journal = {Nat Commun},
keywords = {charge_separation organic},
month = sep,
publisher = {The Author(s)},
timestamp = {2016-09-09T14:04:45.000+0200},
title = {The fate of electron-hole pairs in polymer:fullerene blends for organic photovoltaics},
url = {http://dx.doi.org/10.1038/ncomms12556},
volume = 7,
year = 2016
}