Methodus incrementorum directa & inversa. Auctore Brook Taylor, LL. D. & Regiae Societatis Secretario
B. Taylor. Typis Pearsonianis Prostant apud Gul. Innys ad Insignia Principis in Coemeterio Paulino MDCCXV, Londini, (1715)
Zusammenfassung
Quantitates indeterminatas in his confidero ut Incrementis perpetuò auctas, vel Decrementis diminutas. Indeterminatas ipsas Integrales designo literis z, x, v, &c. earumque Incrementa, seu partes mox addendas designo iisdem literis a parte inferiori punctatis z, x, v, &c. (p. 1), ... per seriem huius formae,
n s = tt × A z^n-1/x^2n+1 + B z^n-3/x^2n-1 + C z^n-5/x^2n-3 + &c.
Coefficientes autem A, B, C, D, &c. in harum serierum primà investigo ad hunc modum ... (p. 112).
%0 Book
%1 taylor1715methodus
%A Taylor, B.
%C Londini
%D 1715
%I Typis Pearsonianis Prostant apud Gul. Innys ad Insignia Principis in Coemeterio Paulino MDCCXV
%K Taylor_Series Trigonometry
%T Methodus incrementorum directa & inversa. Auctore Brook Taylor, LL. D. & Regiae Societatis Secretario
%U https://books.google.com/books?id=iXN1xgEACAAJ
%X Quantitates indeterminatas in his confidero ut Incrementis perpetuò auctas, vel Decrementis diminutas. Indeterminatas ipsas Integrales designo literis z, x, v, &c. earumque Incrementa, seu partes mox addendas designo iisdem literis a parte inferiori punctatis z, x, v, &c. (p. 1), ... per seriem huius formae,
n s = tt × A z^n-1/x^2n+1 + B z^n-3/x^2n-1 + C z^n-5/x^2n-3 + &c.
Coefficientes autem A, B, C, D, &c. in harum serierum primà investigo ad hunc modum ... (p. 112).
@book{taylor1715methodus,
abstract = {Quantitates indeterminatas in his confidero ut Incrementis perpetuò auctas, vel Decrementis diminutas. Indeterminatas ipsas Integrales designo literis z, x, v, &c. earumque Incrementa, seu partes mox addendas designo iisdem literis a parte inferiori punctatis z, x, v, &c. (p. 1), [...] per seriem huius formae,
n s = tt × A z^[n-1]/x^[2n+1] + B z^[n-3]/x^[2n-1] + C z^[n-5]/x^[2n-3] + &c.
Coefficientes autem A, B, C, D, &c. in harum serierum primà investigo ad hunc modum [...] (p. 112).},
added-at = {2024-02-06T10:34:15.000+0100},
address = {Londini},
author = {Taylor, B.},
biburl = {https://www.bibsonomy.org/bibtex/2952f96d4e24cc6a2f7f53c7a6f70b4e8/schrausser},
interhash = {4497715b2aafa4dbacd13b70f7f4b2e7},
intrahash = {952f96d4e24cc6a2f7f53c7a6f70b4e8},
keywords = {Taylor_Series Trigonometry},
publisher = {Typis Pearsonianis Prostant apud Gul. Innys ad Insignia Principis in Coemeterio Paulino MDCCXV},
timestamp = {2024-02-10T08:48:06.000+0100},
title = {{Methodus incrementorum directa & inversa. Auctore Brook Taylor, LL. D. & Regiae Societatis Secretario}},
url = {https://books.google.com/books?id=iXN1xgEACAAJ},
year = 1715
}