Аннотация

<title>Author Summary</title> <p>Metabolism is the network of biochemical reactions that transforms available resources (“inputs”) into energy currency and building blocks (“outputs”). Different organisms have different assortments of metabolic pathways and input/output requirements, reflecting their adaptation to specific environments, and to specific strategies for reproduction and survival. Here we ask whether, beneath the intricate wiring of these networks, it is possible to discern signatures of optimal (i.e., shortest and maximally efficient) pathway architectures. A systematic search for such optimal pathways between all possible pairs of input and output molecules in real organic chemistry is computationally intractable. However, we can implement such a search in a simple artificial chemistry, which roughly resembles a single atom (e.g., carbon) version of real biochemistry. We find that optimal pathways in our idealized chemistry display a logarithmic dependence of pathway length on input/output molecule size. They also display recurring topologies, including autocatalytic cycles reminiscent of ancient and highly conserved cores of real biochemistry. Finally, across all optimal pathways, we identify universally important metabolites and reactions, as well as a characteristic distribution of reaction utilization. Similar features can be observed in real metabolic networks, suggesting that arithmetic simplicity may lie beneath some aspects of biochemical complexity.</p>

Линки и ресурсы

тэги