Article,

Likelihood methods for measuring statistical evidence.

.
Statistics in medicine, 21 (17): 2563-99 (September 2002)3155<m:linebreak></m:linebreak>Anàlisi de dades.
DOI: 10.1002/sim.1216

Abstract

Focused on interpreting data as statistical evidence, the evidential paradigm uses likelihood ratios to measure the strength of statistical evidence. Under this paradigm, re-examination of accumulating evidence is encouraged because (i) the likelihood ratio, unlike a p-value, is unaffected by the number of examinations and (ii) the probability of observing strong misleading evidence is naturally low, even for study designs that re-examine the data with each new observation. Further, the controllable probabilities of observing misleading and weak evidence provide assurance that the study design is reliable without affecting the strength of statistical evidence in the data. This paper illustrates the ideas and methods associated with using likelihood ratios to measure statistical evidence. It contains a comprehensive introduction to the evidential paradigm, including an overview of how to quantify the probability of observing misleading evidence for various study designs. The University Group Diabetes Program (UGDP), a classic and still controversial multi-centred clinical trial, is used as an illustrative example. Some of the original UGDP results, and subsequent re-analyses, are presented for comparison purposes.

Tags

Users

  • @jepcastel

Comments and Reviews