@ytyoun

The Roots of the Independence Polynomial of a Clawfree Graph

, und . Journal of Combinatorial Theory, Series B, 97 (3): 350 -- 357 (2007)
DOI: 10.1016/j.jctb.2006.06.001

Zusammenfassung

The independence polynomial of a graph G is the polynomial ∑ A x | A | , summed over all independent subsets A ⊆ V ( G ) . We prove that if G is clawfree, then all the roots of its independence polynomial are real. This extends a theorem of Heilmann and Lieb O.J. Heilmann, E.H. Lieb, Theory of monomer–dimer systems, Comm. Math. Phys. 25 (1972) 190–232, answering a question posed by Hamidoune Y.O. Hamidoune, On the numbers of independent k-sets in a clawfree graph, J. Combin. Theory Ser. B 50 (1990) 241–244 and Stanley R.P. Stanley, Graph colorings and related symmetric functions: Ideas and applications, Discrete Math. 193 (1998) 267–286.

Links und Ressourcen

Tags

Community

  • @dblp
  • @ytyoun
@ytyouns Tags hervorgehoben