Zusammenfassung

The axon initial segment (AIS), located within the first 30 $\mu$m of the axon, has two essential roles in generating action potentials and maintaining axonal identity. AIS assembly depends on a ßIV-spectrin/ankyrin G scaffold, but its macromolecular arrangement is not well understood. Here, we quantitatively determined the AIS nanoscale architecture by using stochastic optical reconstruction microscopy (STORM). First, we directly demonstrate that the 190-nm periodicity of the AIS submembrane lattice results from longitudinal, head-to-head ßIV-spectrin molecules connecting actin rings. Using multicolor 3D-STORM, we resolve the nanoscale organization of ankyrin G: its amino terminus associates with the submembrane lattice, whereas the C terminus radially extends (∼32 nm on average) toward the cytosol. This AIS nano-architecture is highly resistant to cytoskeletal perturbations, indicating its role in structural stabilization. Our findings provide a comprehensive view of AIS molecular architecture and will help reveal the crucial physiological functions of this compartment.

Links und Ressourcen

Tags