Zusammenfassung

AbstractNonlinear interactions between ENSO and the western Pacific warm pool annual cycle generate an atmospheric combination mode (C-mode) of wind variability. The authors demonstrate that C-mode dynamics are responsible for the development of an anomalous low-level northwest Pacific anticyclone (NWP-AC) during El Niño events. The NWP-AC is embedded in a large-scale meridionally antisymmetric Indo-Pacific atmospheric circulation response and has been shown to exhibit large impacts on precipitation in Asia. In contrast to previous studies, the authors find the role of air?sea coupling in the Indian Ocean and northwestern Pacific only of secondary importance for the NWP-AC genesis. Moreover, the NWP-AC is clearly marked in the frequency domain with near-annual combination tones, which have been overlooked in previous Indo-Pacific climate studies. Furthermore, the authors hypothesize a positive feedback loop involving the anomalous low-level NWP-AC through El Niño and C-mode interactions: the development of the NWP-AC as a result of the C-mode acts to rapidly terminate El Niño events. The subsequent phase shift from retreating El Niño conditions toward a developing La Niña phase terminates the low-level cyclonic circulation response in the central Pacific and thus indirectly enhances the NWP-AC and allows it to persist until boreal summer. Anomalous local circulation features in the Indo-Pacific (e.g., the NWP-AC) can be considered a superposition of the quasi-symmetric linear ENSO response and the meridionally antisymmetric annual cycle modulated ENSO response (C-mode). The authors emphasize that it is not adequate to assess ENSO impacts by considering only interannual time scales. C-mode dynamics are an essential (extended) part of ENSO and result in a wide range of deterministic high-frequency variability.

Links und Ressourcen

Tags