@tamal

Chiral Magnetic Effect and QCD Phase Transitions with Effective Models

, , and . (2010)cite arxiv:1003.4169 Comment: 35 pages, 7 figures.

Abstract

We study the influence of the chiral phase transition on the chiral magnetic effect. The chiral electric current density along the magnetic field, the electric charge difference between on each side of the reaction plane, and the azimuthal charged-particle correlations as functions of the temperature during the QCD phase transitions are calculated. It is found that with the decrease of the temperature, the chiral electric current density, the electric charge difference, and the azimuthal charged-particle correlations all get a sudden suppression at the critical temperature of the chiral phase transition, because the large quark constituent mass in the chiral symmetry broken phase quite suppresses the axial anomaly and the chiral magnetic effect. We suggest that the azimuthal charged-particle correlations (including the correlators divided by the total multiplicity of produced charged particles which are used in current experiments and another kind of correlators not divided by the total multiplicity) can be employed to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

Description

Chiral Magnetic Effect and QCD Phase Transitions with Effective Models

Links and resources

Tags