Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis, energy-transfer-based microspectroscopies, nanoscale quantum entanglement and photonic-mode hybridization. Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized plasmonic modes. Analogous to the Tavis–Cummings model, two whispering-gallery-mode antennas placed in the foci of an elliptical plasmonic cavity fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.
%0 Journal Article
%1 aeschlimann2017cavityassisted
%A Aeschlimann, Martin
%A Brixner, Tobias
%A Cinchetti, Mirko
%A Frisch, Benjamin
%A Hecht, Bert
%A Hensen, Matthias
%A Huber, Bernhard
%A Kramer, Christian
%A Krauss, Enno
%A Loeber, Thomas H.
%A Pfeiffer, Walter
%A Piecuch, Martin
%A Thielen, Philip
%D 2017
%J Light Sci Appl
%K antenna experiment gold nano-optics plasmon
%N 11
%P e17111
%R 10.1038/lsa.2017.111
%T Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas
%V 6
%X Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis, energy-transfer-based microspectroscopies, nanoscale quantum entanglement and photonic-mode hybridization. Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized plasmonic modes. Analogous to the Tavis–Cummings model, two whispering-gallery-mode antennas placed in the foci of an elliptical plasmonic cavity fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.
@article{aeschlimann2017cavityassisted,
abstract = {Radiationless energy transfer is at the core of diverse phenomena, such as light harvesting in photosynthesis, energy-transfer-based microspectroscopies, nanoscale quantum entanglement and photonic-mode hybridization. Typically, the transfer is efficient only for separations that are much shorter than the diffraction limit. This hampers its application in optical communication and quantum information processing, which require spatially selective addressing. Here, we demonstrate highly efficient radiationless coherent energy transfer over a distance of twice the excitation wavelength by combining localized and delocalized plasmonic modes. Analogous to the Tavis–Cummings model, two whispering-gallery-mode antennas placed in the foci of an elliptical plasmonic cavity fabricated from single-crystal gold plates act as a pair of oscillators coupled to a common cavity mode. Time-resolved two-photon photoemission electron microscopy (TR 2P-PEEM) reveals an ultrafast long-range periodic energy transfer in accordance with the simulations. Our observations open perspectives for the optimization and tailoring of mesoscopic energy transfer and long-range quantum emitter coupling.},
added-at = {2020-02-24T11:44:13.000+0100},
author = {Aeschlimann, Martin and Brixner, Tobias and Cinchetti, Mirko and Frisch, Benjamin and Hecht, Bert and Hensen, Matthias and Huber, Bernhard and Kramer, Christian and Krauss, Enno and Loeber, Thomas H. and Pfeiffer, Walter and Piecuch, Martin and Thielen, Philip},
biburl = {https://www.bibsonomy.org/bibtex/2f1407d4a4d69a6acadbf643a5db95cc5/ep5optics},
copyright = {2017 The Author(s)},
day = 03,
doi = {10.1038/lsa.2017.111},
file = {Aeschlimann et al. - 2017 - Cavity-assisted ultrafast long-range periodic ener.pdf:C\:\\Users\\scherzad\\Zotero\\storage\\XQQA8RTJ\\Aeschlimann et al. - 2017 - Cavity-assisted ultrafast long-range periodic ener.pdf:application/pdf;Snapshot:C\:\\Users\\scherzad\\Zotero\\storage\\GGMH3GA4\\lsa2017111.html:text/html},
interhash = {4353f62004a31798e7954113dfec8128},
intrahash = {f1407d4a4d69a6acadbf643a5db95cc5},
issn = {2047-7538},
journal = {Light Sci Appl},
keywords = {antenna experiment gold nano-optics plasmon},
language = {en},
month = {11},
number = 11,
pages = {e17111},
timestamp = {2020-02-24T11:44:13.000+0100},
title = {Cavity-assisted ultrafast long-range periodic energy transfer between plasmonic nanoantennas},
urldate = {2020-02-24},
volume = 6,
year = 2017
}