Abstract
Extracting information from diverse websites is increasingly important, especially for analyzing vast data sets to detect trends, gain insights. By studying job ads, researchers can monitor employer demand shifts, assisting policymakers in aiding affected workers and industries. However, extraction faces challenges like varied website formats, dynamic content, and duplicate data. This study introduces a method for extracting data from diverse private university websites involving keyword identification, website categorization, and extraction pipelines.
Users
Please
log in to take part in the discussion (add own reviews or comments).