@lee_peck

Improvements to the scalability of multiobjective clustering

, and . Evolutionary Computation, 2005. The 2005 IEEE Congress on, (September 2005)
DOI: 10.1109/CEC.2005.1554990

Abstract

In previous work, the authors have introduced a novel and highly effective approach to data clustering, based on the explicit optimization of a partitioning with respect to two complementary clustering objectives (Handl, et. al., 2004, 2005). In this paper, three modifications were made to the algorithm that improved its scalability to large data sets with high dimensionality and large numbers of clusters. Specifically, new initialization and mutation schemes that enable a more efficient exploration of the search space were introduced, and the data model that is used as a basis for selecting the most significant solution from the Pareto front was modified. The high performance of the resulting algorithm is demonstrated on a newly developed clustering test suite.

Description

Welcome to IEEE Xplore 2.0: Improvements to the scalability of multiobjective clustering

Links and resources

Tags

community

  • @dblp
  • @lee_peck
@lee_peck's tags highlighted