Inproceedings,

Towards a soft robotic skin for autonomous tissue palpation

, , , , , , and .
Proceedings - IEEE International Conference on Robotics and Automation, page 6150--6155. (2017)
DOI: 10.1109/ICRA.2017.7989729

Abstract

Manual palpation is commonly used to localize tumors and other features buried deep inside organs during open surgery. This approach is not feasible in minimally invasive or robotic surgery, as the contact with the tissue is mediated by instruments. To address this problem, we propose a soft robotic skin (SRS) that can be deployed from a small incision and create a stiffness map in a single step. Such a skin is composed of a matrix of soft robotic tactile elements (SRTEs), each one able to expand and record the tissue response during expansion. In this paper, we firstly prove the feasibility of palpation using a single SRTE. Then, we present and test a soft-suction based anchoring mechanism able to keep the SRS in the desired position in contact with the tissue, allowing surgeons to palpate different sides of the organ. Finally, we detail a calibration method for the SRTE, and assess the feasibility of identifying lumps buried inside a soft tissue phantom, and then inside a chicken liver during an ex-vivo trial. Experimental results show that the SRTE was able to differentiate simulated lumps (up to 3.25 mm deep) from healthy tissue in both the phantom and the ex-vivo trials. These results, added to the ability of the suction gripper to compensate for the expansion forces of each SRTE, are paving the way for soft robotic autonomous tools that can be used for intraoperative mapping of tissue cancers.

Tags

Users

  • @sassw
  • @dblp

Comments and Reviews