Please log in to take part in the discussion (add own reviews or comments).
Cite this publication
More citation styles
- please select -
%0 Journal Article
%1 brown2012conditional
%A Brown, G.
%A Pocock, A.
%A Zhao, M.J.
%A Luján, M.
%D 2012
%J Journal of Machine Learning Research
%K feature information ml selection theory
%P 27--66
%T Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection
%U http://scholar.google.com/scholar.bib?q=info:xytlQCJxY3UJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&as_vis=1&ct=citation&cd=0
%V 13
@article{brown2012conditional,
added-at = {2012-02-17T15:51:31.000+0100},
author = {Brown, G. and Pocock, A. and Zhao, M.J. and Luj{\'a}n, M.},
biburl = {https://www.bibsonomy.org/bibtex/2c7f85614c152738abd000c94bcdba1b4/folke},
interhash = {4114e3398c200b74eeb34e1688a3e443},
intrahash = {c7f85614c152738abd000c94bcdba1b4},
journal = {Journal of Machine Learning Research},
keywords = {feature information ml selection theory},
pages = {27--66},
timestamp = {2012-02-17T15:51:31.000+0100},
title = {Conditional Likelihood Maximisation: A Unifying Framework for Information Theoretic Feature Selection},
url = {http://scholar.google.com/scholar.bib?q=info:xytlQCJxY3UJ:scholar.google.com/&output=citation&hl=en&as_sdt=0,5&as_vis=1&ct=citation&cd=0},
volume = 13,
year = 2012
}