Abstract
Future manufacturing systems need to cope with frequent changes and disturbances. As such, their control requires constant adaptation and high flexibility. Holonic manufacturing is a highly distributed control paradigm that promises to handle these problems successfully. It is based on the concept of autonomous co-operating agents, called `holons'. This paper gives an overview of the holonic reference architecture for manufacturing systems as developed at PMA-KULeuven. This architecture, called PROSA, consists of three types of basic holons: order holons, product holons, and resource holons. They are structured using the object-oriented concepts of aggregation and specialisation. Staff holons can be added to assist the basic holons with expert knowledge. The resulting architecture has a high degree of self-similarity, which reduces the complexity to integrate new components and enables easy reconfiguration of the system. PROSA shows to cover aspects of both hierarchical as well as heterarchical control approaches. As such, it can be regarded as a generalisation of the two former approaches. More importantly, PROSA introduces significant innovations: the system structure is decoupled from the control algorithm, logistical aspects can be decoupled from technical ones, and PROSA opens opportunities to achieve more advanced hybrid control algorithms.
Users
Please
log in to take part in the discussion (add own reviews or comments).