Abstract
This study evaluates the ability of four versions BCC (Beijing Climate Center or National Climate Center) models (BCC\_AGCM2.1, BCC\_AGCM2.2, BCC\_CSM1.1 and BCC\_CSM1.1 m) in simulating the MJO phenomenon using the outputs of the AMIP (Atmospheric Model Intercomparison Project) and historical runs. In general, the models can simulate some major characteristics of the MJO, such as the intensity, the periodicity, the propagation, and the temporal/spatial evolution of the MJO signals in the tropics. There are still some biases between the models and the observation/reanalysis data, such as the overestimated total intraseasonal variability, but underestimated MJO intensity, shorter significant periodicity, and excessive westward propagation. The differences in the ability of simulating the MJO between AMIP and historical experiments are also significant. Compared to the AMIP runs, the total intraseasonal variability is reduced and more realistic, however the ratio between the MJO and its westward counterpart decreases in the historical runs. This unrealistic simulation of the zonal propagation might have been associated with the greater mean precipitation over the Pacific and corresponded to the exaggeration of the South Pacific Convergence Zone structure in precipitation mean state. In contrast to the T42 versions, the improvement of model resolution demonstrate more elaborate topography, but the enhanced westward propagation signals over the Arabia Sea followed. The underestimated (overestimated) MJO variability over eastern Indian Ocean (Pacific) was assumed to be associated with the mean state. Three sets of sensitive experiments using BCC\_CSM1.1 m turn out to support this argument.
Users
Please
log in to take part in the discussion (add own reviews or comments).