Abstract
PageRank, the popular link-analysis algorithm for ranking web pages, assigns a query and user independent estimate of "importance" to web pages. Query and user sensitive extensions of PageRank, which use a basis set of biased PageRank vectors, have been proposed in order to personalize the ranking function in a tractable way. We analytically compare three recent approaches to personalizing PageRank and discuss the tradeoffs of each one.
Users
Please
log in to take part in the discussion (add own reviews or comments).