Аннотация
Stereo matching algorithms are one of heavily researched topic in binocular stereo vision. Massive 3D information can be obtained by finding correct correspondence of different points between images captured from different views. Development of stereo matching algorithm is done for obtaining disparity maps i.e. depth information. When disparities computed for scan lines then dense reconstruction becomes time consuming for vision navigation systems. So for pair of stereo images proposed method extracts features points those are at contours in images and then a dynamic program is used to find the corresponding points from each image and calculates disparities. Also to reduce the noise which may lead to incorrect results in stereo correspondence, a new stereo matching algorithm based on the dynamic programming is proposed. Generally dynamic programming finds the global minimum for independent scan lines in polynomial time. While efficient, its performance is far from desired one because vertical consistency between scan lines is not enforced. This method review the use of dynamic programming for stereo correspondence by applying it to a contour instead to individual scan lines. Proposed methodology will obtain the global minimum for contour array in linear time using Longest Common Subsequent (LCS) dynamic programming method with no disparity space image (DSI)
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)