Misc,

Optomechanics assisted with a qubit: From dissipative state preparation to many-body physics

, , and .
(May 29, 2013)

Abstract

We propose and analyze nonlinear optomechanical protocols that can be implemented by adding a single atom to an optomechanical cavity. In particular, we show how to engineer the environment in order to dissipatively prepare the mechanical oscillator in a superposition of Fock states with fidelity close to one. Furthermore, we discuss how a single atom in a cavity with several mechanical oscillators can be exploited to realize nonlinear many-body physics by stroboscopically driving the mechanical oscillators. We show how to prepare non-classical many-body states by either applying coherent protocols or engineering dissipation. The analysis of the protocols is carried out using a perturbation theory for degenerate Liouvillians and numerical tools. Our results apply to other systems where a qubit is coupled to a mechanical oscillator via a bosonic mode, e.g., in cavity quantum electromechanics.

Tags

Users

  • @jacksankey

Comments and Reviews