Article,

Soil Stabilization using Fly Ash and Cotton Fiber

.
International Journal of Trend in Scientific Research and Development, 1 (6): 1173-1181 (October 2017)

Abstract

Mixing of fiber for ground improvement has been practiced for recent years. Many researches has shown the expected results. This paper mainly deals with the ground improvement technique using both Fly Ash and cotton fiber. The combination of them gives a satisfactory value of its practical application. Both Fly Ash and Cotton fiber are treated as waste materials in our country in spite of having its engineering significances. Here all the tests were performed accepting the Fly Ash percent is 10 for maximum bearing capacity of soil. Three types of sample were prepared as per 0.3%, 0.5%, 0.7% of cotton fiber. For instances, it deliberately increases the Dry Density of soil up to 48.05 KN/m3 where as normal unreinforced soil sample gives about 22 KN/m3. The Ultimate bearing capacity increases up to 80.65 Kpa whereas the unreinforced soil sample gives for 35 Kpa. The result of California Bearing Ratio (CBR) test gives desired value (23%) than unreinforced soil (17%). The CBR test is performed only for 0.7% of cotton fiber where maximum stress is found. The most significant part in this study is to show the variation on cotton fiber for ground improvement technique at different ratio. This paper shows the gradual increase in Deviator stress for UCS tests for the increase in the percent of cotton fiber mixing with Fly Ash. This research may meet the need of ground having low strength at important sites. Tonmoy Kumar Brahmachary "Soil Stabilization using Fly Ash and Cotton Fiber " Published in International Journal of Trend in Scientific Research and Development (ijtsrd), ISSN: 2456-6470, Volume-1 | Issue-6 , October 2017, URL: http://www.ijtsrd.com/papers/ijtsrd2493.pdf http://www.ijtsrd.com/engineering/civil-engineering/2493/soil-stabilization-using-fly-ash-and-cotton-fiber-/tonmoy-kumar-brahmachary-

Tags

Users

  • @ijtsrd

Comments and Reviews