Article,

A variational eigenvalue solver on a quantum processor

, , , , , , , and .
Nature Communications, (Apr 10, 2013)
DOI: 10.1038/ncomms5213

Abstract

Quantum computers promise to efficiently solve important problems that are intractable on a conventional computer. For quantum systems, where the dimension of the problem space grows exponentially, finding the eigenvalues of certain operators is one such intractable problem and remains a fundamental challenge. The quantum phase estimation algorithm can efficiently find the eigenvalue of a given eigenvector but requires fully coherent evolution. We present an alternative approach that greatly reduces the requirements for coherent evolution and we combine this method with a new approach to state preparation based on ansätze and classical optimization. We have implemented the algorithm by combining a small-scale photonic quantum processor with a conventional computer. We experimentally demonstrate the feasibility of this approach with an example from quantum chemistry: calculating the ground state molecular energy for He-H+, to within chemical accuracy. The proposed approach, by drastically reducing the coherence time requirements, enhances the potential of the quantum resources available today and in the near future.

Tags

Users

  • @cmcneile

Comments and Reviews