Article,

Measurement Methods Affect the Observed Global Dimming and Brightening

, , , , and .
J. Climate, 26 (12): 4112--4120 (Dec 19, 2012)
DOI: 10.1175/jcli-d-12-00482.1

Abstract

Abstract Surface incident solar radiation G determines our climate and environment, and has been widely observed with a single pyranometer since the late 1950s. Such observations have suggested a widespread decrease between the 1950s and 1980s (global dimming), that is, at a rate of ?3.5 W m?2 decade?1 (or ?2\% decade?1) from 1960 to 1990. Since the early 1990s, the diffuse and direct components of G have been measured independently, and a more accurate G has been calculated by summing these two measurements. Data from this summation method suggest that G increased at a rate of 6.6 W m?2 decade?1 (3.6\% decade?1) from 1992 to 2002 (brightening) at selected sites. The brightening rates from these studies were also higher than those from a single pyranometer. In this paper, the authors used 17 years (1995?2011) of parallel measurements by the two methods from nearly 50 stations to test whether these two measurement methods of G provide similar long-term trends. The results show that although measurements of G by the two methods agree very well on a monthly time scale, the long-term trend from 1995 to 2011 determined by the single pyranometer is 2?4 W m?2 decade?1 less than that from the summation method. This difference of trends in the observed G is statistically significant. The dependence of trends of G on measurement methods uncovered here has an important implication for the widely reported global dimming and brightening based on datasets collected by different measurement methods; that is, the dimming might have been less if measured with current summation methods.

Tags

Users

  • @pbett

Comments and Reviews