Abstract
One of the main goals in the field of complex systems is the extraction of relevant and meaningful information about the properties of the underlying system 1-3. The recovering of information about the underlying system of interactions allows us to build a geometrical model able to take into account complex collective fluctuations 4.
In this talk we discuss these issues by using cross-correlation matrices of different financial data. We show several ways to extract a structure of interactions comparing different methods including the spectra analysis 5-7. We discuss the effects of noise dressing due to the finiteness of the time series and we present results of the fluctuations of correlations over different time- periods.
1) T. Aste, T. Di Matteo, S. T. Hyde, Physica A 346 (2005) 20-26.\\
2) M. Tumminello, T. Aste, T. Di Matteo, R. N. Mantegna, PNAS 102, n. 30 (2005) 10421 10426.\\
3) M. Tumminello, T. Aste, T. Di Matteo, and R. N. Mantegna, EPJB 55 (2007) 209-217.\\
4) T. Aste and T. Di Matteo, Physica A 370 (2006) 156-161.\\
5) L. Laloux, P. Cizeau, J.-P. Bouchaud, M. Potters, Phys. Rev. Lett. 83 (1999) 14671470.\\
6) V. Plerou, P. Gopikrishnan, B. Rosenow, L.A.N. Amaral, H.E. Stanley, Phys. Rev. Lett. 83 (1999) 14711474.\\
7) L. Giada, M. Marsili, Phys. Rev. E 63 (2001) 061101.
Users
Please
log in to take part in the discussion (add own reviews or comments).