Article,

Bootstrap percolation on complex networks

, , , and .
Physical Review E, 82 (1): 011103+ (July 2010)
DOI: 10.1103/physreve.82.011103

Abstract

We consider bootstrap percolation on uncorrelated complex networks. We obtain the phase diagram for this process with respect to two parameters: f, the fraction of vertices initially activated, and p, the fraction of undamaged vertices in the graph. We observe two transitions: the giant active component appears continuously at a first threshold. There may also be a second, discontinuous, hybrid transition at a higher threshold. Avalanches of activations increase in size as this second critical point is approached, finally diverging at this threshold. We describe the existence of a special critical point at which this second transition first appears. In networks with degree distributions whose second moment diverges (but whose first moment does not), we find a qualitatively different behavior. In this case the giant active component appears for any f>0 and p>0, and the discontinuous transition is absent. This means that the giant active component is robust to damage, and also is very easily activated. We also formulate a generalized bootstrap process in which each vertex can have an arbitrary threshold.

Tags

Users

  • @nonancourt

Comments and Reviews