Abstract
M dwarfs are prime targets for planet search programs, particularly of those
focused on the detection and characterization of rocky planets in the habitable
zone. Understanding their magnetic activity is important because it affects our
ability to detect small planets, and it plays a key role in the
characterization of the stellar environment. We analyze observations of the Ca
II H&K and H\alpha lines as diagnostics of chromospheric activity for
low-activity early-type M dwarfs. We analyze the time series of spectra of 71
early-type M dwarfs collected for the HADES project for planet search purposes.
The HARPS-N spectra provide simultaneously the H&K doublet and the H\alpha
line. We develop a reduction scheme able to correct the HARPS-N spectra for
instrumental and atmospheric effects, and to provide flux-calibrated spectra in
units of flux at the stellar surface. The H&K and H\alpha fluxes are compared
with each other, and their variability is analyzed. We find that the H and K
flux excesses are strongly correlated with each other, while the H\alpha flux
excess is generally less correlated with the H&K doublet. We also find that
H\alpha emission does not increase monotonically with the H&K line flux,
showing some absorption before being filled in by chromospheric emission when
H&K activity increases. Analyzing the time variability of the emission fluxes,
we derive a tentative estimate of the rotation period (of the order of a few
tens of days) for some of the program stars, and the typical lifetime of
chromospheric active regions (a few stellar rotations). Our results are in good
agreement with previous studies. In particular, we find evidence that the
chromospheres of early-type M dwarfs could be characterized by different
filaments coverage, affecting the formation mechanism of the H\alpha line. We
also show that chromospheric structure is likely related to spectral type.
Users
Please
log in to take part in the discussion (add own reviews or comments).