Zusammenfassung
Knowledge graphs have recently become the state-of-the-art tool for
representing the diverse and complex knowledge of the world. Examples include
the proprietary knowledge graphs of companies such as Google, Facebook, IBM, or
Microsoft, but also freely available ones such as YAGO, DBpedia, and Wikidata.
A distinguishing feature of Wikidata is that the knowledge is collaboratively
edited and curated. While this greatly enhances the scope of Wikidata, it also
makes it impossible for a single individual to grasp complex connections
between properties or understand the global impact of edits in the graph. We
apply Formal Concept Analysis to efficiently identify comprehensible
implications that are implicitly present in the data. Although the complex
structure of data modelling in Wikidata is not amenable to a direct approach,
we overcome this limitation by extracting contextual representations of parts
of Wikidata in a systematic fashion. We demonstrate the practical feasibility
of our approach through several experiments and show that the results may lead
to the discovery of interesting implicational knowledge. Besides providing a
method for obtaining large real-world data sets for FCA, we sketch potential
applications in offering semantic assistance for editing and curating Wikidata.
Nutzer