Article,

Quantal Phase Factors Accompanying Adiabatic Changes

.
Proc. R. Soc. Lond. A, 392 (1802): 45--57 (Mar 8, 1984)

Abstract

A quantal system in an eigenstate, slowly transported round a circuit C by varying parameters $R$ in its Hamiltonian $H(R)$, will acquire a geometrical phase factor $i\gamma(C)$ in addition to the familiar dynamical phase factor. An explicit general formula for $\gamma$(C) is derived in terms of the spectrum and eigenstates of $H(R)$ over a surface spanning C. If C lies near a degeneracy of $H, \gamma$(C) takes a simple form which includes as a special case the sign change of eigenfunctions of real symmetric matrices round a degeneracy. As an illustration $\gamma$(C) is calculated for spinning particles in slowly-changing magnetic fields; although the sign reversal of spinors on rotation is a special case, the effect is predicted to occur for bosons as well as fermions, and a method for observing it is proposed. It is shown that the Aharonov-Bohm effect can be interpreted as a geometrical phase factor.

Tags

Users

  • @jgurian
  • @corneliu
  • @ttuegel

Comments and Reviews