Abstract
With the technical advances in ubiquitous computing and wireless networking, there has been an increasing need to capture the context information (such as the location) and to figure it into applications. In this paper, we establish the theoretical base and develop a localization algorithm for building a zero-configuration and robust indoor localization and tracking system to support location-based network services and management. The localization algorithm takes as input the on-line measurements of received signal strengths (RSSs) between 802.11 APs and between a client and its neighboring APs, and estimates the location of the client. The on-line RSS measurements among 802.11 APs are used to capture (in real-time) the effects of RF multi-path fading, temperature and humidity variations, opening and closing of doors, furniture relocation, and human mobility on the RSS measurements, and to create, based on the truncated singular value decomposition (SVD) technique, a mapping between the RSS measure and the actual geographical distance. The proposed system requires zero-configuration because the on-line calibration of the effect of wireless physical characteristics on RSS measurement is automated and no on-site survey or initial training is required to bootstrap the system. It is also quite responsive to environmental dynamics, as the impacts of physical characteristics changes have been explicitly figured in the mapping between the RSS measures and the actual geographical distances. We have implemented the proposed system with inexpensive off-the-shelf Wi-Fi hardware and sensory functions of IEEE 802.11, and carried out a detailed empirical study in our departmental building, Siebel Center for Computer Science. The empirical results show the proposed system is quite robust and gives accurate localization results.
Users
Please
log in to take part in the discussion (add own reviews or comments).