Аннотация
Topological Data Analysis (TDA) provides novel approaches that allow us to
analyze the geometrical shapes and topological structures of a dataset. As one
important application, TDA can be used for data visualization and dimension
reduction. We follow the framework of circular coordinate representation, which
allows us to perform dimension reduction and visualization for high-dimensional
datasets on a torus using persistent cohomology. In this paper, we propose a
method to adapt the circular coordinate framework to take into account sparsity
in high-dimensional applications. We use a generalized penalty function instead
of an $L_2$ penalty in the traditional circular coordinate algorithm. We
provide simulation experiments and real data analysis to support our claim that
circular coordinates with generalized penalty will accommodate the sparsity in
high-dimensional datasets under different sampling schemes while preserving the
topological structures.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)