Abstract
The prospects of indirect detection of dark matter at the galactic center
depend sensitively on the mass profile within the inner parsec. We calculate
the distribution of dark matter on sub-parsec scales by integrating the
time-dependent Fokker-Planck equation, including the effects of
self-annihilations, scattering of dark matter particles by stars, and capture
in the supermassive black hole. We consider a variety of initial dark matter
distributions, including models with very high densities ("spikes") near the
black hole, and models with "adiabatic compression" of the baryons. The
annihilation signal after 10 Gyr is found to be substantially reduced from its
initial value, but in dark matter models with an initial spike,
order-of-magnitude enhancements can persist compared with the rate in
spike-free models, with important implications for indirect dark matter
searches with GLAST and Air Cherenkov Telescopes like HESS and CANGAROO.
Users
Please
log in to take part in the discussion (add own reviews or comments).