Abstract
Textures play an important role in recognition of
images. This paper investigates the efficiency of performance
of three texture based feature extraction methods for face
recognition. The methods for comparative study are Grey Level
Co_occurence Matrix (GLCM), Local Binary Pattern (LBP)
and Elliptical Local Binary Template (ELBT). Experiments
were conducted on a facial expression database, Japanese
Female Facial Expression (JAFFE). With all facial expressions
LBP with 16 vicinity pixels is found to be a better face
recognition method among the tested methods. Experimental
results show that classification based on segmenting face
region improves recognition accuracy.
Users
Please
log in to take part in the discussion (add own reviews or comments).