Abstract
The flow stress of solution hardened single crystals and polycrystals is analyzed with respect to its dependence on temperature and strain rate. An evaluation of literature data, especially at low temperatures and low concentrations in fcc alloys, reveals that the interaction between dislocations and discrete, atomic-sized obstacles (or fixed clusters of them) cannot be responsible for solution hardening. A trough model is favored in which the effect of the solutes is postulated to be equivalent to a continuous locking of the dislocations along their entire length, during every waiting period. The macroscopic features of this model are similar to Suzuki’s chemical-hardening model. It can also explain the strong interaction of solution hardening and strain hardening at elevated temperatures, as well as basic features of dynamic strain-aging, in particular its strain dependence.
Users
Please
log in to take part in the discussion (add own reviews or comments).