Beliebiger Eintrag,

A relativistic, model-independent, three-particle quantization condition

, und .
(19.11.2014)

Zusammenfassung

We present a generalization of Luescher's relation between the finite-volume spectrum and scattering amplitudes to the case of three particles. We consider a relativistic scalar field theory in which the couplings are arbitrary aside from a Z2 symmetry that removes vertices with an odd number of particles. The theory is assumed to have two-particle phase shifts that are bounded by \pi/2 in the regime of elastic scattering. We determine the spectrum of the finite-volume theory from the poles in the odd-particle-number finite-volume correlator, which we analyze to all orders in perturbation theory. We show that it depends on the infinite-volume two-to-two K-matrix as well as a nonstandard infinite-volume three-to-three K-matrix. A key feature of our result is the need to subtract physical singularities in the three-to-three amplitude and thus deal with a divergence-free quantity. This allows our initial, formal result to be truncated to a finite dimensional determinant equation. At present, the relation of the three-to-three K-matrix to the corresponding scattering amplitude is not known, although previous results in the non-relativistic limit suggest that such a relation exists.

Tags

Nutzer

  • @cmcneile

Kommentare und Rezensionen