Аннотация
Understanding the exceptional Lie groups as the symmetry groups of simpler
objects is a long-standing program in mathematics. Here, we explore one famous
realization of the smallest exceptional Lie group, G2. Its Lie algebra acts
locally as the symmetries of a ball rolling on a larger ball, but only when the
ratio of radii is 1:3. Using the split octonions, we devise a similar, but more
global, picture of G2: it acts as the symmetries of a 'spinorial ball rolling
on a projective plane', again when the ratio of radii is 1:3. We explain this
ratio in simple terms using the incidence geometry of G2, and show how a form
of geometric quantization applied to this system gives the imaginary split
octonions.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)