Abstract
Calculations of the equilibrium structure and vibrational frequencies of FOOF using the local density approximation are in good agreement with experimental results. However using a theoretically more accurate gradient corrected (non-local) density functional produces a worse structure. Three isomers of FONO are also studied. The geometry of C2v isomer FNO2 is predicted accurately by the local density approximation, with gradient corrected functions again giving a poorer structure, but better vibrational frequencies. The structure of the trans-isomer of FONO is in agreement with recent coupled cluster studies, however calculations on cis-FONO disagree with the coupled cluster results, but may be in better agreement with the experimental geometry.
Users
Please
log in to take part in the discussion (add own reviews or comments).