Abstract
Recommendation algorithms and multi-class classifiers can support users of social bookmarking systems in assigning tags to their bookmarks. Content based recommenders are the usual approach for facing the cold start problem, i.e., when a bookmark is uploaded for the first time and no information from other users can be exploited. In this paper, we evaluate several recommendation algorithms in a cold-start scenario on a large real-world dataset.
Users
Please
log in to take part in the discussion (add own reviews or comments).