Аннотация
It is shown that for every 1≤s≤n, the probability that thes-th largest eigenvalue of a random symmetricn-by-n matrix with independent random entries of absolute value at most 1 deviates from its median by more thant is at most 4e − t 232 s2. The main ingredient in the proof is Talagrand’s Inequality for concentration of measure in product spaces.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)