,

On the Concentration of Eigenvalues of Random Symmetric Matrices

, , и .
Israel Journal of Mathematics, 131 (1): 259--267 (2002)
DOI: 10.1007/BF02785860

Аннотация

It is shown that for every 1≤s≤n, the probability that thes-th largest eigenvalue of a random symmetricn-by-n matrix with independent random entries of absolute value at most 1 deviates from its median by more thant is at most 4e − t 232 s2. The main ingredient in the proof is Talagrand’s Inequality for concentration of measure in product spaces.

тэги

Пользователи данного ресурса

  • @ytyoun

Комментарии и рецензии