Abstract
We introduce the Free Music Archive (FMA), an open and easily accessible
dataset suitable for evaluating several tasks in MIR, a field concerned with
browsing, searching, and organizing large music collections. The community's
growing interest in feature and end-to-end learning is however restrained by
the limited availability of large audio datasets. The FMA aims to overcome this
hurdle by providing 917 GiB and 343 days of Creative Commons-licensed audio
from 106,574 tracks from 16,341 artists and 14,854 albums, arranged in a
hierarchical taxonomy of 161 genres. It provides full-length and high-quality
audio, pre-computed features, together with track- and user-level metadata,
tags, and free-form text such as biographies. We here describe the dataset and
how it was created, propose a train/validation/test split and three subsets,
discuss some suitable MIR tasks, and evaluate some baselines for genre
recognition. Code, data, and usage examples are available at
https://github.com/mdeff/fma
Users
Please
log in to take part in the discussion (add own reviews or comments).