Аннотация
Normalized cross correlation (NCC) has been used extensively for many machine vision applications, but the traditional normalized correlation operation does not meet speed requirements for time-critical applications. In this paper, we propose a fast NCC computation for defect detection. A sum-table scheme is utilized, which allows the calculations of image mean, image variance and cross-correlation between images to be invariant to the size of template window. For an image of size <i>M × N</i> and a template window of size <i>m × n</i>, the computational complexity of the traditional NCC involves 3 ċ <i>m ċ n ċ M ċ N</i> additions/subtractions and 2 ċ <i>m ċ n ċ M ċ N</i> multiplications. The required numbers of computations of the proposed sum-table scheme can be significantly reduced to only 18 ċ <i>M ċ N</i> additions/subtractions and 2 ċ <i>M ċ N</i> multiplications.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)