Abstract
Software agents can be used to automate many of the tedious, time-consuming
information processing tasks that humans currently have to complete manually.
However, to do so, agent plans must be capable of representing the myriad of
actions and control flows required to perform those tasks. In addition, since
these tasks can require integrating multiple sources of remote information ?
typically, a slow, I/O-bound process ? it is desirable to make execution as
efficient as possible. To address both of these needs, we present a flexible
software agent plan language and a highly parallel execution system that enable
the efficient execution of expressive agent plans. The plan language allows
complex tasks to be more easily expressed by providing a variety of operators
for flexibly processing the data as well as supporting subplans (for
modularity) and recursion (for indeterminate looping). The executor is based on
a streaming dataflow model of execution to maximize the amount of operator and
data parallelism possible at runtime. We have implemented both the language and
executor in a system called THESEUS. Our results from testing THESEUS show that
streaming dataflow execution can yield significant speedups over both
traditional serial (von Neumann) as well as non-streaming dataflow-style
execution that existing software and robot agent execution systems currently
support. In addition, we show how plans written in the language we present can
represent certain types of subtasks that cannot be accomplished using the
languages supported by network query engines. Finally, we demonstrate that the
increased expressivity of our plan language does not hamper performance;
specifically, we show how data can be integrated from multiple remote sources
just as efficiently using our architecture as is possible with a
state-of-the-art streaming-dataflow network query engine.
Users
Please
log in to take part in the discussion (add own reviews or comments).