Abstract
In recent years, there has been a proliferation of theoretical graph models, e.g., preferential attachment and small-world models, motivated by real-world graphs such as the Internet topology. To address the natural question of which model is best for a particular data set, we propose a model selection criterion for graph models. Since each model is in fact a probability distribution over graphs, we suggest using Maximum Likelihood to compare graph models and select their parameters. Interestingly, for the case of graph models, computing likelihoods is a difficult algorithmic task. However, we design and implement MCMC algorithms for computing the maximum likelihood for four popular models: a power-law random graph model, a preferential attachment model, a small-world model, and a uniform random graph model. We hope that this novel use of ML will objectify comparisons between graph models.
Users
Please
log in to take part in the discussion (add own reviews or comments).