Abstract
Electric power is a basic need in today’s life. Due to the extensive usage of power, there is a need to look
for an alternate clean energy source. Recently many researchers have focused on the solar energy as a
reliable alternative power source. Photovoltaic panels are used to collect sun radiation and convert it into
electrical energy. Most of the photovoltaic panels are deployed in a fixed position, they are inefficient as
they are fixed only at a specific angle. The efficiency of photovoltaic systems can be considerably increased
with an ability to change the panels angel according to the sun position. The main goal of such systems is
to make the sun radiation perpendicular to the photovoltaic panels as much as possible all the day times.
This paper presents a dual axis design for a fuzzy inference approach-based solar tracking system. The
system is modeled using Mamdani fuzzy logic model and the different combinations of ANFIS modeling.
Models are compared in terms of the correlation between the actual testing data output and their
corresponding forecasted output. The Mean Absolute Percent Error and Mean Percentage Error are used
to measure the models error size. In order to measure the effectiveness of the proposed models, we
compare the output power produced by a fixed photovoltaic panels with the output which would be
produced if the dual-axis panels are used. Results show that dual-axis solar tracker system will produce
22% more power than a fixed panels system.
Users
Please
log in to take part in the discussion (add own reviews or comments).