Аннотация
To consider the entanglement between the spatial region \$A\$ and its
complement in a QFT, we need to assign a Hilbert space \$H\_A\$ to the
region, by making a certain choice on the boundary \$A\$. We argue that
a small physical boundary is implicitly inserted at the entangling surface. We
investigate these issues in the context of 2d CFTs, and show that we can indeed
read off the Cardy states of the \$c=1/2\$ minimal model from the entanglement
entropy of the critical Ising chain.
Пользователи данного ресурса
Пожалуйста,
войдите в систему, чтобы принять участие в дискуссии (добавить собственные рецензию, или комментарий)