Lesezeichen  34

  •  

    Optimizing the capabilities of multicore processors in all sorts of products requires bridging the chasm between processors' and software's capability, and industry sources say the long-term focus should be on figuring out a way to write code for parallel computing. "We don't even know for sure what we should be teaching, but we know we should be changing what we're teaching," says University of California, Berkeley professor David Patterson, a former president of ACM. UC Berkeley and the University of Illinois at Urbana-Champaign will split $20 million from Intel and Microsoft to underwrite Universal Parallel Computing Research Centers over the next five years, with Berkeley's share going toward the enhancement of research already done by the school's Parallel Computing Laboratory and the hiring of 50 researchers to focus on the problem of writing software for parallelism. Patterson says Berkeley has started introducing freshmen to parallel computing through classes focusing on the "map-reduce" method, while upperclassmen are being given a grounding in "sticky" parallelism issues such as load balancing and synchronization. Patterson acknowledges that an entirely new programming language may need to be invented in order to tackle the challenge of parallel computing. Brown University professor Maurice Herlihy says a more likely possibility is the evolution of parallel programming features by existing languages--a view endorsed by AMD's Margaret Lewis, who cites the necessity of interim solutions to amend legacy software written for unicore processors along with software under development. Lewis says AMD is trying to infuse parallel coding methods via compilers and code analyzers, noting that with these interim solutions "programmers aren't getting the full benefits of parallelism ... but it runs better in a multicore environment."
    vor 16 Jahren von @gwpl
     
      acm_technews
       
       
    •  

      MIT researcher Seth Lloyd believes that a new architecture for quantum random access memory (QRAM) could be used to reduce the energy wasted by random access memory (RAM) as well as for completely anonymous Internet searchers. Classical computing requires the use of RAM to retrieve information, but RAM design is wasteful and subject to interference, Lloyd says. Lloyd worked with Vittorio Giovannetti at the NEST-CNR-INFM in Pisa, Italy, and Lorenzo Maccone at the University of Pavia, Italy, to create a system that works as QRAM. Lloyd says their QRAM architecture was discovered when his colleagues and him were researching how to make QRAM work on classical RAM design. He says QRAM is a "sneakier" way of accessing RAM. In traditional RAM, the first bit of an address throws two switches, the second throws four, and so on, Lloyd says. With QRAM, "all the bits of the address only interact with two switches," Lloyd says. The energy saved using QRAM is not enough to offset the larger energy problems associated with classical computing, and Lloyd says QRAM is slower than RAM. However, he says QRAM's benefits can be applied to quantum Internet searches. "If you had a quantum Internet, then this would be useful," he says. "This offers a huge decrease in energy used and an increase in robustness." For this to work, Lloyd says "dark fiber" is needed, and although it is already being used for some classical communications, a quantum Internet would need more.
      vor 16 Jahren von @gwpl
       
        acm_technews
         
         
      •  

        Many women in IT credit their mothers for making them believe they could succeed in any career. IT and service manager Priscilla Milam says when she got into computer science there were no other women in the program, and it was her mother who told her to learn to live in a man's world, encouraging her to read the headlines in the financial pages, sports pages, and general news, and not to get emotional. "Still, IT in general is a man's world, and by keeping up with the news and sports, when the pre/post meetings end up in discussions around whether the Astros won or lost or who the Texans drafted, I can participate; and suddenly they see me as part of the group and not an outsider," Milam says. Catalyst says the percentage of women holding computer and mathematics positions has declined since 2000, from 30 percent to 27 percent in 2006. Milam and other women in high-tech positions say a passion for technology begins early in life and a few encouraging words from their mothers helped them realize they could overcome the challenges that exist when entering an industry dominated by men. CSC lead solution architect Debbie Joy says the key to succeeding in IT is to put gender aside at work and learn to regard colleagues as peers, and soon they will do the same.
        vor 16 Jahren von @gwpl
         
          acm_technews
           
           
        •  

          Both young men and women are avoiding high school courses that could lead to careers in IT, but young women are dropping those courses faster than young men, says Australia's Charles Sturt University Faculty of Education dean Toni Downes. Downes was a senior member of a research project that examined the interest of male and female high school students in particular high school subjects. The study of 1,334 male and female students found that only 13 percent of girls said they would study IT-related subjects in their senior years, and both boys and girls shied away from high school computing and IT subjects between 2002 and 2007. Downes believes that a shift in computer curriculum from a combination of computer literacy and foundational studies to computing and IT as an academic discipline has contributed to the decline in enrollments, particularly among females. "The reasons are complex, but the reasons that girls give are often the same reasons that disinterested boys give," Downes says. "Sometimes they are making their judgments on careers based on stereotypes, sometimes the girls are making their decisions based on self-limiting identities like 'it's not cool for me to be a nerd' because they think the career is nerdy." Downes says part of the problem is that girls do not engage with technology in ways that allow them to use it playfully, instead of just functionally, so they are not attracted to thinking creatively or critically about how and why technology works.
          vor 16 Jahren von @gwpl
           
            acm_technews
             
             
          •  

            Cryptography has been an arms race, with codemakers and hackers constantly updating their arsenals, but quantum cryptography could theoretically give codemakers the upper hand. Even the absolute best in classical encryption, the 128-bit RSA, can be cracked using brute force computing power. However, quantum cryptography could make possible uncrackable code using quantum key distribution (QKD). Modern cryptography relies on the use of digital keys to encrypt data before sending it over a network so it can be decrypted by the recipient. QKD promises a theoretically uncrackable code, one that can be easily distributed and still be transparent. Additionally, the nature of quantum mechanics makes it so that if an eavesdropper tries to intercept or spy on the transmission, both the sender and the receiver will know. Any attempt to read the transmission will alert the sender and the receiver, allowing them to generate a new key to send securely. QKD had its first real-world application in Geneva, where quantum cryptography was used in the electronic voting system. Not only did QKD guarantee that the poll was secure, but it also ensured that no votes were lost in transmission, because the uncertainty principle established that there were no changes in the transmitted data. The SECOQC project, which did the work for the voting system, says the goal is to establish network-wide quantum encryption that can work over longer distances between multiple parties.
            vor 16 Jahren von @gwpl
             
             
          •  

            Three competing teams of computer researchers are working on new types of software for use with mulitcore processors. Stanford University and six computer and chip makers--Sun Microsystems, Advanced Micro Devices, Nvidia, IBM, Hewlett-Packard, and Intel--are creating the Pervasive Parallelism Lab. Previously, Microsoft and Intel helped finance new labs at the University of California, Berkeley and the University of Illinois at Urbana-Champaign. The research efforts are in response to a growing awareness that the software industry is not ready for the coming availability of microprocessors with multiple cores on a single chip. Computer and chip manufacturers are concerned that if software cannot keep up with hardware improvements, consumers will not feel the need to upgrade their systems. Current operating system software can work with the most advanced server microprocessors and processors for video game machines, which have up to eight cores. But software engineers say that most applications are not designed for efficient use of the dozens or hundreds of processors that will be available in future computers. The university efforts will share some approaches, but will try different experiments, programming languages, and hardware innovations. The efforts will also rethink operating systems and compilers. The Berkeley researchers have divided parallel computing problems into seven classes, with each class being approached in different ways. The Stanford researchers say they are looking for new ways to hide the complexity of parallel computing from programmers, and will use virtual worlds and robotic vehicles to test their efforts.
            vor 16 Jahren von @gwpl
             
             
          •  

            At the International World Wide Web Conference in Beijing, two Google researchers unveiled VisualRank, software they say will advance digital image searching on the Web the same way Google's PageRank software advanced Web page searches. VisualRank is an algorithm that blends image-recognition software methods with techniques that weigh and rank images that look the most similar. Most image searches are based on cues from the text associated with each image, and not on the actual content of the image itself. Image analysis is a largely unsolved problem in computer science, the Google researchers say. "We wanted to incorporate all of the stuff that is happening in computer vision and put it in a Web framework," says Google's Shumeet Baluja, who made the presentation along with Google researcher Yushi Jing. Their paper, "PageRank for Product Image Search," focuses on a subset of the images that Google has cataloged. The researchers concentrated on the 2,000 most popular product queries on Google's product search, and sorted the top 10 images from both its ranking system and the standard Google Image Search results. The research effort then used a team of 150 Google employees to create a scoring system for image "relevance." The researchers say VisualRank returned 83 percent less irrelevant images.
            vor 16 Jahren von @gwpl
             
              acm_technews
               
               
            •  

              Computer scientist Donald E. Knuth, winner of ACM's A.M. Turing Award in 1974, says in an interview that open-source code has yet to reach its full potential, and he anticipates that open-source programs will start to be totally dominant as the economy makes a migration from products to services, and as increasing numbers of volunteers come forward to tweak the code. Knuth admits that he is unhappy about the current movement toward multicore architecture, complaining that "it looks more or less like the hardware designers have run out of ideas, and that they're trying to pass the blame for the future demise of Moore's Law to the software writers by giving us machines that work faster only on a few key benchmarks!" He acknowledges the existence of important parallelism applications but cautions that they need dedicated code and special-purpose methods that will have to be significantly revised every several years. Knuth maintains that software produced via literate programming was "significantly better" than software whose development followed more traditional methodologies, and he speculates that "if people do discover nice ways to use the newfangled multithreaded machines, I would expect the discovery to come from people who routinely use literate programming." Knuth cautions that software developers should be careful when it comes to adopting trendy methods, and expresses strong reservations about extreme programming and reusable code. He says the only truly valuable thing he gets out of extreme programming is the concept of working in teams and reviewing each other's code. Knuth deems reusable code to be "mostly a menace," and says that "to me, 're-editable code' is much, much better than an untouchable black box or toolkit."
              vor 16 Jahren von @gwpl
               
                acm_technews
                 
                 
              •  

                The Defense Advanced Research Projects Agency has issued a call for research proposals to design compilers that can dynamically optimize programs for specific environments. As the Defense Department runs programs across a wider range of systems, it is facing the lengthy and manual task of tuning programs to run under different environments, a process DARPA wants to automate. "The goal of DARPA's envisioned Architecture-Aware Compiler Environment (AACE) Program is to develop computationally efficient compilers that incorporate learning and reasoning methods to drive compiler optimizations for a broad spectrum of computing system configurations," says DARPA's broad area announcement. The compilers can be written in the C and Fortran programming languages, but the BAA encourages work in languages that support techniques for the parallelization of programs. The quality of the proposals will determine how much DARPA spends on the project, which will run at least through 2011. Proposals are due by June 2.
                vor 17 Jahren von @gwpl
                 
                 
              •  

                The European Union-funded RobotCub project will send an iCub robot to six European research labs, where researchers will train iCub to learn and act independently by learning from its own experiences. The project at Imperial College London will examine how "mirror neurons," which fire in humans to trigger memories of previous experiences when humans are trying to understand the physical actions of others, can be translated into a digital application. The team at UPMC in Paris will explore the dynamics needed to achieve full body control for iCub, and the researchers at TUM Munich will work on developing iCub's manipulation skills. A project team at the University of Lyons will explore internal simulations techniques, which occur in our brains when planning actions or trying to understand the actions of others. In Turkey, a team at METU in Ankara will focus on language acquisition and the iCub's ability to link objects with verbal utterances. The iCub robots are about the size of three-year-old children and are equipped with highly dexterous hands and fully articulated heads and eyes. The robots have hearing and touch capabilities and are designed to be able to crawl and to sit up. Researchers expect to enable iCub to learn by doing, including the ability to track objects visually or by sound, and to be able to navigate based on landmarks and a sense of its own position.
                vor 17 Jahren von @gwpl
                 
                  acm_technews
                   
                   

                Publikationen  229