Labeled LDA (D. Ramage, D. Hall, R. Nallapati and C.D. Manning; EMNLP2009) is a supervised topic model derived from LDA (Blei+ 2003). While LDA's estimated topics don't often equal to human's expectation because it is unsupervised, Labeled LDA is to treat documents with multiple labels. I implemented Labeled LDA in python.
C. Kling, J. Kunegis, S. Sizov, und S. Staab. Proceedings of the 7th ACM international conference on Web search and data mining, Seite 603--612. ACM, (2014)
R. Mehrotra, S. Sanner, W. Buntine, und L. Xie. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, Seite 889--892. ACM, (2013)
J. Tang, M. Zhang, und Q. Mei. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining, Seite 5--13. ACM, (2013)