Mat estimateRigidTransform(const Mat& srcpt, const Mat& dstpt, bool fullAffine)¶ Computes optimal affine transformation between two 2D point sets Parameters: * srcpt – The first input 2D point set * dst – The second input 2D point set of the same size and the same type as A * fullAffine – If true, the function finds the optimal affine transformation with no any additional resrictions (i.e. there are 6 degrees of freedom); otherwise, the class of transformations to choose from is limited to combinations of translation, rotation and uniform scaling (i.e. there are 5 degrees of freedom) The function finds the optimal affine transform [A|b] (a 2 \times 3 floating-point matrix) that approximates best the transformation from \texttt{srcpt}_i to \texttt{dstpt}_i : [A^*|b^*] = arg \min _{[A|b]} \sum _i \| \texttt{dstpt} _i - A { \texttt{srcpt} _i}^T - b \| ^2 where [A|b] can be either arbitrary (when fullAffine=true ) or have form
R. Bezrukavnikov, S. Dawydiak, and G. Dobrovolska. (2021)cite arxiv:2110.15903Comment: 13 pages, 1 figure, 1 table. With an appendix by Roman Bezrukavnikov, Alexander Braverman, and David Kazhdan.
H. Meuel, S. Ferenz, Y. Liu, and J. Ostermann. Proc. of the 25th IEEE International Conference on Image Processing (ICIP), (October 2018)Accepted for publication.
D. Roomi, R.Bhargavi, and T. Banu. International Journal of Computer Science, Engineering and Information Technology (IJCSEIT), 2 (2):
159-175(April 2012)
A. Berg, and J. Malik. Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings
of the 2001 IEEE Computer Society Conf. on, 1, page I----607----I----614 vol.1. (2001)