bookmarks  1

  •  

    CUDA lets you work with familiar programming concepts while developing software that can run on a GP This is the first of a series of articles to introduce you to the power of CUDA -- through working code -- and to the thought process to help you map applications onto multi-threaded hardware (such as GPUs) to get big performance increases. Of course, not all problems can be mapped efficiently onto multi-threaded hardware, so part of my thought process will be to distinguish what will and what won't work, plus provide a common-sense idea of what might work "well-enough". "CUDA programming" and "GPGPU programming" are not the same (although CUDA runs on GPUs). CUDA permits working with familiar programming concepts while developing software that can run on a GPU. It also avoids the performance overhead of graphics layer APIs by compiling your software directly to the hardware (GPU assembly language, for instance), thereby providing great performance.
    14 years ago by @draganigajic
    (0)
     
     
  • ⟨⟨
  • 1
  • ⟩⟩

publications  

    No matching posts.
  • ⟨⟨
  • ⟩⟩