bookmarks  1

  •  

    Fræser is a framework for estimating the parameters of static and dynamic errors-in-variables systems with the opportunity to compare various errors-in-variables parameter estimation algorithms via simulations. It features a graphical user interface and several examples for simultaneously estimating model and noise parameters. The framework incorporates the following linear and nonlinear estimation methods for static and dynamic systems: * model parameter estimation for static systems o Koopmans method * linear model and noise parameter estimation for dynamic systems o (extended) instrumental variables method (XIV) o bias-compensating least-squares method (BCLS) o Frisch scheme (FS) o generalized Koopmans-Levin method (GKL) * nonlinear model parameter estimation for static systems o nonlinear Koopmans method (NK) o approximated maximum likelihood method (AML) * nonlinear model and noise parameter estimation for dynamic systems o bias-compensated least squares method (BCLS) o nonlinear Koopmans-Levin method (NKL) o nonlinear extennonlinear extension to generalized Koopmans-Levin method (NGKL)
    15 years ago by @gresch
    (0)
     
     
  • ⟨⟨
  • 1
  • ⟩⟩

publications  

    No matching posts.
  • ⟨⟨
  • ⟩⟩