We report a new measurement of the ratio $h/m_{\mathrm{Rb}}$ between the Planck constant and the mass of $^{87}\mathrm{Rb}$ atom. A new value of the fine structure constant is deduced, $\alpha^{-1}=137.035\,999\,037\,(91)$ with a relative uncertainty of $6.6\times 10^{-10}$. Using this determination, we obtain a theoretical value of the electron anomaly $a_\mathrm{e}=0.001~159~652~181~13(84)$ which is in agreement with the experimental measurement of Gabrielse ($a_\mathrm{e}=0.001~159~652~180~73(28)$). The comparison of these values provides the most stringent test of the QED. Moreover, the precision is large enough to verify for the first time the muonic and hadronic contributions to this anomaly.