Hi Geeks, welcome to Part-3 of our Reinforcement Learning Series. In the last two blogs, we covered some basic concepts in RL and also studied the multi-armed bandit problem and its solution methods…
When the agent interacts with the environment, the sequence of experienced tuples can be highly correlated. The naive Q-Learning algorithm that learns from each of these experience tuples in…
In Q-Learning, we represent the Q-value as a table. However, in many real-world problems, there are enormous state and/or action spaces and tabular representation is insufficient. For instance…
This is a PyTorch implementation/tutorial of Deep Q Networks (DQN) from paper Playing Atari with Deep Reinforcement Learning. This includes dueling network architecture, a prioritized replay buffer and double-Q-network training.
Many deep learning frameworks have been released over the past few years. Among them, PyTorch from Facebook AI Research is very unique and has gained widespread adoption because of its elegance…